Comparing two samples by penalized logistic regression
نویسندگان
چکیده
منابع مشابه
Comparing two samples by penalized logistic regression
Inference based on the penalized density ratio model is proposed and studied. The model under consideration is specified by assuming that the log–likelihood function of two unknown densities is of some parametric form. The model has been extended to cover multiple samples problems while its theoretical properties have been investigated using large sample theory. A main application of the densit...
متن کاملPenalized Logistic Regression in Case-Control Studies
Likelihood-based inference of odds ratios in logistic regression models is problematic for small samples. For example, maximum-likelihood estimators may be seriously biased or even non-existent due to separation. Firth proposed a penalized likelihood approach which avoids these problems. However, his approach is based on a prospective sampling design and its application to case-control data has...
متن کاملPenalized logistic regression for detecting gene interactions.
We propose using a variant of logistic regression (LR) with (L)_(2)-regularization to fit gene-gene and gene-environment interaction models. Studies have shown that many common diseases are influenced by interaction of certain genes. LR models with quadratic penalization not only correctly characterizes the influential genes along with their interaction structures but also yields additional ben...
متن کاملSpeaker recognition with penalized logistic regression machines
「罰金付きロジスティック回帰マシンを用いた話者認識」, ビルケネス・オイスティン(ノル ウェー工科大学),松井知子(統数研) Abstract We study on speaker recognition using a penalized logistic regression machine (PLRM) [1-3]. Parameters of a multiclass logistic regression model with the log-likelihood values of speaker Gaussian mixture models (GMMs) are discriminatively estimated and the model used for speaker decision. In speaker identification experimen...
متن کاملClassification of gene microarrays by penalized logistic regression.
Classification of patient samples is an important aspect of cancer diagnosis and treatment. The support vector machine (SVM) has been successfully applied to microarray cancer diagnosis problems. However, one weakness of the SVM is that given a tumor sample, it only predicts a cancer class label but does not provide any estimate of the underlying probability. We propose penalized logistic regre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2008
ISSN: 1935-7524
DOI: 10.1214/07-ejs078